

TELECOM- PROMOTION 1998-1999

MISSION EN ENTREPRISE

MASTERE : INTERNET ET SYSTEMES REPARTIS

TITRE DE LA THESE :

AN AUTOMATED BENCHMARKING TOOLSET :
EXPERIMENT DESIGN AND CONTROL, RUN TIME SUBMODULE.

Nom de l�entreprise : National Institute of Standards and Technology

Ville : GAITHERSBURG Pays : ETATS UNIS

Dates : Période de stage du lundi 3 mai au 31 décembre 1999

Réalisé par : M. Benjamin TRAVERSE

Sous la direction de : M. Alan MINK (Directeur de satge)

 Et de : Mme Monique BECKER (Conseillé d�études)

Prénom et nom de l�élève Mastère ISR
Benjamin Traverse
������������������������������������
������������������������������������

Nom de l�entreprise d�accueil
National Institute of Standards and Technology (NIST)
������������������������������������

Lieu du Stage
GAITHERSBURG (Maryland, USA)
������������������������������������

Nom du conseiller d�étude (enseignant INT)
Monique Becker
������������������������������������

TITRE DU RAPPORT
������������������������������������

AN AUTOMATED BENCHMARKING TOOLSET:
EXPERIMENT DESIGN AND CONTROL, RUN TIME SUBMODULE

������������������������������������

 RESUME:
L'évaluation des performances des ordinateurs est une tâche continuelle et coûteuse
en temps et qui génère de grandes quantités de données à stocker et analyser. Le but
de ce travail est de proposer une méthode automatisée pour génèrer, mesurer et
analyser un profil exhaustif des performances. Bien que nos efforts soient portés
principalement sur des réseaux de machines, cette méthode s'applique à tout
système informatique parallèle ou distribué. Notre méthode se divise en trois
modules distincts : (1) un module de collecte et de stockage des données, (2) un
module d'analyse des données et (3) un module automatisé d'exécution et de gestion
d�experience. Ce rapport décrit la partie définition et controle d�experience, et sous-
module d�éxécution.

 ABSTRACT:
Benchmarking and performance evaluation of high performance computing are a
continuously on-going process that consumes significant stage time and generates
large amounts of data to be stored and analyzed. The goal of this work is to propose
an automate method to generate, capture and analyze an extensive performance
profile. Although our initial efforts focus on commodity clusters, they are applicable
to any parallel or distributed high performance computing system. Such an
automated system has three main components: (1) a data collection and storage
module, (2) a data analysis module, and (3) an Experiment specification and
execution modules. The focus of this report is on the third module: Experiment
specification and execution.

Date

An Automated Benchmarking Toolset:
Experiment Design and Control, Run Time Submodule

B. Traverse, A. Mink and M. Courson

Information Technology Laboratory

National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899

amink@nist.gov

Abstract
Benchmarking and performance evaluation of high performance computing are a continuously on-

going process that consumes significant staff time and generates large amounts of data to be stored and
analyzed. The goal of this work is to propose an automate method to generate, capture and analyze an
extensive performance profile. Although our initial efforts focus on commodity clusters, they are applicable
to any parallel or distributed high performance computing system. Such an automated system has three
main components: (1) a data collection and storage module, (2) a data analysis module, and (3) an
Experiment Specification and execution modules. The focus of this report is on the third module:
Experiment specification and execution.

Introduction

TABLE OF CONTENTS

TABLE OF FIGURES
1. Introduction ... 1
2. Motivation and related work ... 3
3. Experiment Design Submodule... 4

3.1. Experiment Specification Package... 5

3.2. Experiment definition example .. 6

3.3. Experiment Plan Design Package .. 15

4. Run Submodule ... 19
5. Choice and installation of a batch queuing system.. 21

5.1. Introduction ... 21

5.2. Choice of DQS.. 21

5.3. Installation, configuration and maintenance .. 22
a. Installation and configuration ... 22
b. Maintenance ... 23

5.4. NT Support for DQS... 24
a. NTshell ... 25
b. NTbridge... 25

Conclusions and work in progress... 26
Acknowledgement... 27
REFERENCES .. 28
Annex A. Nist Overview ... 29
Annex B. Example of Documentation... 32
Annex C. NTshell ... 34
Annex D. NTbridge .. 35

Introduction

TABLE OF FIGURES
Figure 1: Project diagram. ___ 1
Figure 2: Process of the project. __ 2
Figure 3: Experiment Design and Run Submodules. ___ 4
Figure 4: General information. ___ 7
Figure 5: Main window.___ 8
Figure 6: Application selection.___ 8
Figure 7: Database applications. __ 9
Figure 8: Parameters window. __ 9
Figure 9: List of processors parameter. __ 10
Figure 10: Communication Environment values. __ 10
Figure 11: Add a value to a parameter. __ 11
Figure 12: Choice of values from the Database. ___ 11
Figure 13: Communication Environment values. __ 11
Figure 14: Value selection. ___ 12
Figure 15: New variable window. __ 12
Figure 16: New variable �Mynewvar added�. ___ 13
Figure 17: first application stored (�ep� version 2.3b2). _______________________________________ 14
Figure 18: After first set duplication.__ 14
Figure 19: Name of second application has been changed. _____________________________________ 15
Figure 20: Experiment Plan Design Package. ___ 16
Figure 21: If a run already exists. __ 17
Figure 22: Information about the run. ___ 17
Figure 23: Choice of a run in the list of similar. ___ 18
Figure 24: Run Package Status. __ 19
Figure 25: A pictorial cluster system ancestry from [11]_______________________________________ 22
Figure 26: Screenshot from qstat32. __ 24
Figure 27: Basic diagram of the NT support for DQS. __ 25
Figure 28: Organization chart. ___ 30

Introduction

1

1. Introduction

The high rate of evolution in computing technologies and the need to have up to date and accurate

performance information on parallel computing platforms and applications involve frequent execution of
benchmark and application codes. In addition, parallel architecture tuning requires many tiresome manual
manipulations that must be repeated often.

The multiple parallel machines and architectures available at NIST (IBM SP2s, SGI Origin 2000s,

linux and NT clusters) and especially the three PC clusters in our laboratory (two linux and one NT)
provide an interesting base to develop a tool that simplifies, automates and manages the steps required to
configure and run these codes as well as collect and store performance information for future analysis.

NIST is developing a prototype of an Automated Benchmarking Toolset which consists of three

modules as shown in Figure 1. The first module handles data collection and storage [5]. The second module
focuses on data analysis and visualization [6]. The last module deals with Experiment Design and Control
and is the focus of this paper. We can further divide this Experiment Design and Control module into three
submodules: the Experiment Design Submodule, the Run Submodule and the Queuing System Submodule.

Automated Benchmarking Toolset Project

Data Description

Data Collection

Storage

1. Data Collection & Storage Module

Visualization

Cluster Metrics

Exploratory techniques

Statistics

Data Analysis

2. Analysis & Visualization Module

Experiment Specification Package

Experiment Builder 1 Experiment Builder 2 ...

Experiment Plan Design Package

Experiment Design Submodule

Run Package

Collection Package

Run Submodule

Queuing System Submodule

3. Experiment Design and Control Module

Main Project

Figure 1: Project diagram.

The experiment Design Submodule provides a means to design experiments. The user specifies

parameters chosen for study, and then the tool builds an experiment plan, relying on advanced statistical
techniques as well as existing data in the database. Then the Run Submodule automatically carries out the
experiment plan by submitting only the essential instances to the Queuing system for execution.

Introduction

2

Our view of an experiment life cycle is shown in the data flow diagram of Figure 2. The
information provided by the user is transformed through several stages of a loop. In the �problems and
applications� stage, the user has applications and questions about their performance. So the user defines an
experiment based on parameters believed to be sensitive to the performance of these applications in the
Design of Experiment stage. An experiment plan, consisting of the description of several application
instantiations (or runs) is built and the new experiment plan is stored in the database.

In the �Run and Collection� stage, the instantiations of the experiment plan previously stored are
submitted to the queuing system. After the execution of the experiment is completed, the performance data
is collected and entered into the corresponding tables of the database.

The �visualization and statistics� stage allows comparison of the execution results in the database
to answer the initial questions about the applications in the form of computed metric, plots and graphs. It is
also possible to combine data from several experiments for extended analysis.

The last stage of the loop (Induction) is where the user develops conclusions about the
experiments, can make various changes to the application or system and then repeat or devise new
experiments.

Problems and
applications

Design of
experiment

Run and col lection

Data
Base

Visualization
and

statistics
Induction

Figure 2: Process of the project.

Motivation and related work

3

2. Motivation and related work
Many tools have been developed that focus on performance measurement. Some of the more well

known are VAMPIR [VAM99], from the German company Pallas GmbH, for MPI programs, AIMS
[YAN96] from NASA Ames Research Center, Paradyn [MIL95] that features performance tracing down to
the statement level through dynamic instrumentation and Pablo [AYD96] which is known for its
visualization and self-defining format, among other things.

These tools focus much more extensively on instrumenting codes to collect and compute
performance measurement metrics and locating computational bottlenecks than our toolset. These and other
tools also provide various visualization capabilities.

Although our toolset offers performance measurement and visualization, it does so by
incorporating other existing tools, possibly some of the tools mentioned above. In addition our toolset
focuses on an integrated database that spans all the �benchmark� codes over an extended time frame. This
differs from current effort of the Paradyn team [MIL99] which tracks the performance of a single code with
the intention of better tuning of that code. Our toolset will also provide the capability to design and manage
the evolution of experiments consisting of multiple codes as well as their input and output files.

Experiment Design Submodule

4

3. Experiment Design Submodule
As shown in Figure 3, the experiment Design Submodule creates the experiment definition and the

experiment plan by providing several packages that guide the user through the experiment construction.
The database is a central repository for every package of the submodule, so that the user always has the
possibility to reuse data already stored in the database (this is one of the most distinguishing feature of our
toolset).

 Da ta
 Base

Experiment
Specification

Package

Experiment P lan
Design Package

Experiment
Builder

Experiment
Builder

Experiment
Builder

Sto re

Sto re

Test

Retrieve
Info rmation

Check

Run
Package

Collection
Package

Mpiprofile

SNMP

Add-on

Run Submodule

Experiment Design Submodule

Retrieve
Paramete rs

Figure 3: Experiment Design and Run Submodules.

The reuse of stored information eliminates the need to repeat experiments, and provides the means
to make multi experiment comparison.

Experiment Design Submodule

5

3.1. Experiment Specification Package
The Experiment Specification Package is the first step of creating the experiment definition. It

provides a Graphical User Interface (GUI) which enables a user to build a parameterized shell script, called
a Command File, which completely describes the desired experiment sequence for a single application. The
function of this specification package is to develop a command file and its parameter values. This
information will be passed to the Experiment Plan Design Package where all the combinations of parameter
values are evaluated for inclusion in the experiment. The Run Package integrates this information,
submitting each combination of parameter values into the command file to produce separate instantiations
of shell scripts that will be submitted to the queuing system for execution. Without this tool a user would
normally have to write a script manually for every combination of parameters. Although developing shell
scripts from scratch may not be significantly faster with our toolset, but building on previous information in
the database to build new scripts or modifying old scripts is more productive.

An example of a Command File is shown on the next page. Parameters in the file follow a syntax
of a name delineated by percent symbols such as %parameter name%. Examples of parameters in Figure 8
are %nprocs%, %appname%, %iter%, etc. Our interface model is based on developing a set of parameter
names, which can be extended, and then assigning a set of values to each parameter name pertinent to this
experiment. Parameters with no values are kept in the list, but ignored for the current experiment. To
maintain this parameter model we have included the command file as a special case parameter, even
though, strictly speaking it is not. We can distinguish two parameter classes: the required and the optional
parameters. Initially our set of required parameters are the Command File, the number of processors and of
course the application name. Optional parameters can help describe the application configuration (e.g.
compiler, link flags and compile flags), the run environment (e.g. Ethernet or ATM Network) or application
dependant arguments.

Although the parameter values are text strings inserted into shell scripts, we type each parameter
to make it easier for the user to specify the desired set of values. The current types can be a list (zero or
more) of integers, strings or floats. Required parameters must have default values. There is a default
command file and the default number of processors is one. The application name is currently an exception,
where it is the first parameter that must be assigned a value. We are considering revising this to better fit
out parameter model and assign a default application. We are currently modifying the package to allow the
Command File to be revised, as a special parameter, in this package. Optional parameters don�t have
default values, if no value is provided, they won�t contribute to the experiment.

The following represents our current default parameter list. The first set is our required parameters

and the second set is our optional parameters.

Required parameters:
• CommandFile: Specifies the name of the a file that will be used as a command file for the

current application execution.
• nprocs: A set of integer numbers, each one specifies the number of processors the application

should be distributed among for execution.
• AppName: This is the name of the application to be executed.

Optional parameters (no default values):
• Compiler: The name of the compiler for this application.
• OptimizationLevel, LinkFlags and CompileFlags: These three parameters are compilation

options.
• CommEnv: The Communication Environment parameter specifies communication library

used by this parallel application.
• Network: The names of the type of communication network to be used by the application.
• Parameters: The information of that field can be used to provide optional parameters required

by the command line of the application (typically the size or the class of the problem).

The following Command File example shows how the parameters can be used inside it:

Experiment Design Submodule

6

#!/bin/csh
Next line is a DQS directive that provides the name of the output file (processing report)
#$ -N res_%appname%.%class%.%nprocs%.%iter%
The two next lines are used to place the output files in separate directories.
mkdir /shared/users/lamd/DQS-3.2.7/temp/res_%appname%.%class%.%nprocs%.%iter%
cd /shared/users/lamd/DQS-3.2.7/temp/res_%appname%.%class%.%nprocs%.%iter%
The next line is a DQS directive that joins the error and output streams in the same file
#$ -j y
the next line is a comment, in which the number of processors tag will be replaced too.
want %nprocs% machines
Next line is a DQS directive that express the hardware requirements: number of processors and
#cluster
#$ -l qty.eq.%nprocs%.and.linux
next line sets a path for the execution.
set path=($path /usr/local/lam/bin)
Next line starts the parallel machine.
/usr/local/lam/bin/lamboot -v $HOSTS_FILE
Next line is the command line that run the parallel application.
/usr/local/lam/bin/mpirun -v N /home/lamd/%appname%.%class%.%nprocs%

At the end of the experiment specification, a file is produced and sent to the Experiment Plan

Design Package. The format of the file is :

date
$ experiment
Experiment name
Experiment description
User email address
$ number of values parameter name
value1
value2
value3
etc
$ number of values parameter name
value1
value2
etc

3.2. Experiment definition example
To help illustrate the operation of the Experiment Specification Package, the following

screenshots show the steps necessary to configure two applications �ep� (version 2.3b2) and �is� (version
2.4b5). Each application requires three parameters: �Communication Environment� with �MPICH� value,
number of processors (parameter nprocs) with values from 1 to14 and 16, and an arbitrary parameter
�Mynewvar�. The first is an optional parameter retrieved from previous runs stored in the database, the
second is a default parameter that is always required and the third is a newly specified parameter.

Figure 4 is the first display after the start of the toolset. All the fields in this form are required to
be filled in. As every run of the experiment will be able to be reused in the future, it is important to provide
a description to explain the goal of the experiment and a contact for questions about it.

Experiment Design Submodule

7

Figure 4: General information.

Once the information is entered, selecting �Ok� generates the next window which lists the
applications of the experiment; initially empty, as in Figure 5. The first step is the selection of a new set of
runs (linked to an application) by pushing the �new set of runs� button.

Experiment Design Submodule

8

Figure 5: Main window.

Figure 6 appears and asks for the application name and version. The user can enter one application
name and version manually or select �Browse Database�. To generate a window listing all known
applications and versions existing in the database, like Figure 7 (the darkened line is the cursor).

Figure 6: Application selection.

Experiment Design Submodule

9

Figure 7: Database applications.

Once the user has selected an existing application by clicking on its name, or entered a new
application name, the user selects the �Ok� button and the next window pops up. After an application is
selected, a new window is generated listing all the known parameters from the database for this application,
as shown in Figure 8. If the application doesn�t exist in the database, a list of default parameters is
displayed.

Figure 8: Parameters window.

When one of the parameter buttons is selected, another window, which depends on the nature of
the parameter, appears. For example, Figure 9 shows the nprocs (number of processors) parameter
window. There are three ways of defining the list of values in this case:

• Fill the Max, Min and Step fields and push the �Apply� button (for geometrical generation of
values). The corresponding values are written in the text box on the right side of the window
which always displays the current parameter values.

• Load a file containing the desired values: select �browse� and choose a file on the hard drive,
then select �Open file�. The values in the file are loaded and written into the text box.

Experiment Design Submodule

10

• Enter each value manually in the text box.
Of course the user can combine these steps such as start with a list then modify it manually in the

text box to obtain the desired values. To provide the set of processors wanted (1-14, 16), the simplest way
is to generate the list from 1 to 14 automatically, and then add 16 by hand at the bottom of the list. Then the
user selects �Ok� to record the set of processor values and the display returns to the parameters window.

Figure 9: List of processors parameter.

The number of processors parameter window is an example of a list of integer values. An example
of a list of string type parameters is shown in Figure 10 for the Communication Environment parameter
window. The value �MPI LAM� has been automatically provided by the database and indicates that at least
one run has already been processed with this value for the Communication Environment parameter.

The user has the capability to select this value by clicking on the gray square on the left of the
value name to use it in the experiment, or to add a new value (or to do nothing if he doesn�t want to provide
any value for the Communication Environment parameter). The user wants the value �MPICH� for this
parameter, so it must be added to the set of available values. To add the new value to the current parameter,
push the �add value� button which displays the Figure 11.

Figure 10: Communication Environment values.

Experiment Design Submodule

11

Figure 11: Add a value to a parameter.

One can enter the new value name manually or click on the �Browse Database� button to display

all the values existing in the database for this parameter (not limited to the current application). Figure 12
lists the choices for this parameter in the database.

Figure 12: Choice of values from the Database.

The user can select one by clicking on it in the menu (Figure 12) and it is added to the list of

values for the current parameter (Figure 13) after a confirmation by pushing the �Ok� button in the Figure
11.

Figure 13: Communication Environment values.

Experiment Design Submodule

12

Figure 14: Value selection.

The last step to complete the information for the Communication Environment parameter is to

select the desired value, in Figure 14, by clicking on the value and then select �Ok�. The display returns
again to the main parameters window (Figure 8).

A feature of this design is the ability to add new parameters. In the parameters window of Figure

8, the button �Add variables� generates a new window as shown in Figure 15. The process to generate a
new parameter is simple: just enter its name and its type. Four types are currently available. When the name
and the type of the new parameter are entered, the user clicks �Ok� and a new button for this parameter is
created in the parameter window as shown on Figure 16. The new parameter can now be selected to specify
new values as described above.

Figure 15: New variable window.

Experiment Design Submodule

13

Figure 16: New variable �Mynewvar added�.

When the user has finished the specification for the current application, he confirms his choice by

selecting the �Ok� button in the main parameters window (Figure 16). Then the application name and
version are entered into the main window as shown in Figure 17. If the user wants to change anything in
this application definition, he simply has to select this application bar to invoke the parameter window.

Many experiments consist of several applications using a lot of common parameters. For example,

the NAS Benchmark [8] is composed of 8 applications, each using the same number of processors (2, 4, 8
and 16). It would be very boring to have to redefine every application whereas only the name is different.
That is why we�ve added a �Duplicate� button that simply copies a set of runs along with its parameters
and store it as a new one, see Figure 18. Then the user only has to change the name of the application by
pushing on the new bar button and selecting the application name parameter in the parameters window. If
all the parameters are the same between the two applications (except the name), the user simply has to click
�ok� in the parameters window and the main window becomes Figure 19. That�s the easiest way to
complete the current experiment with the second application.

The last button of the main window is �Delete�. It allows the deletion of any of the application
from the list. Of course it doesn�t affect the existing information in the database, as the experiment is not
completed yet. The storage part of the experiment only takes place in the next package: the Experiment
Plan Design Package.

Experiment Design Submodule

14

Figure 17: first application stored (�ep� version 2.3b2).

Figure 18: After first set duplication.

Experiment Design Submodule

15

Figure 19: Name of second application has been changed.

To conclude the experiment definition in this Experiment Specification Package, the user selects

�Ok� in the main window and a file is generated. This file gathers the information about the experiment,
and is sent to the second package of the Experiment Design Submodule: the Experiment Plan Design
Package. The transfer of the file is still manual (the packages are separated and ran sequentially) but the
implementation of a program that integrates them will start soon. The first prototype of the Experiment
Specification Package is operational and evolving: GUI upgrade, new functionality for better view of
parameters values, improvement of the readability.

3.3. Experiment Plan Design Package
The Experiment Plan Design Package builds the experiment plan and stores it in the database. An

experiment plan describes the way an experiment should be carried out to provide the requested
information. In this case it is a set of fully described runs, that is an instance of an application run. All the
parameters specified in the experiment during the experiment specification process are used to produce
every combination of values. Designing such an experimental plan follows a well-known process [17],
widely used in most scientific disciplines. Based on the requirements (e.g. standard error, interactions),
such techniques define the optimal set of runs that match the requirements at the lowest cost (processing
time). A number of plan-design plug-ins can drive this package. Our prototype provides full-factorial plans,
that select all the possible combinations of parameters (complexity O(en)), but we expect future support for
fractional-factorial plans (up to a O(n) complexity with no iteration).

Upon completing, we store the fully described experiment in the database as an experiment
structure pointing to a list of runs. The runs that are already stored in the database can be reused or re-run
as the user desires, whereas new runs are created in the database and flagged for execution by the Run
Package. A graphical interface helps the user through the selection of existing runs, providing the
opportunity to hand-pick them, let the system chose them or forcibly re-execute the application.

Experiment Design Submodule

16

When the Experiment Plan Design Package starts (Figure 20), a file from the Experiment
Specification package is passed to it, with the name of the experiment builder chosen. The specified
Experiment builder is called and is passed a table corresponding to the current experiment. This table
contains the information required to make an experiment plan: number of parameters and number of values
of each parameter. The Experiment Builder returns a fully specified experiment plan (a list of fully
described runs).

E xp e rim en t P a n D e s ig n P a cka g e

E xp e rim e n t
B ui ld e r

F ile
S ha p ing

Te s t a nd
S to ra g e

D a tab a se

F i le

Tab le

Tes t

S to re

E xp e rim e n t
p la n

g e ne ra tio n

Figure 20: Experiment Plan Design Package.

The list of runs is stored in the database. To avoid undesired replication, the package checks if any
of these run already exist in the database. If so, it prompts the user for direction, as shown in Figure 21.
First, the user has the choice to review the parameters of this run by selecting the �More Info about the run�
button which extends the current window as shown in Figure 22.

Experiment Design Submodule

17

Figure 21: If a run already exists.

Figure 22: Information about the run.

Four choices are available to the user:
• Select an existing run in the list of similar runs. It means that this run won�t be processed

another time and only a link to the selected run will be written in the database.
• The second choice (Always select an existing run) lets the system reuse existing results in the

database. This is done automatically for every run of the current application (but not for every
application of the experiment).

Experiment Design Submodule

18

Figure 23: Choice of a run in the list of similar.

• The third choice (Store and run a new one) replicates this run, meaning that another

occurrence of the run will be processed during the run phase.
• The last button (Always store and run a new one) asks the system to always replicate the runs

for the current application.

 The process of storing the new experiment is atomic. Thus if a problem occurs during this phase,

the storage is not done and the database integrity is maintained. At this point, the application run-time
specification physically exists in the database, but is still unprocessed (no performance data). That's the job
of the next Submodule: the Run Submodule.

So far, a prototype of the Experiment Plan Design Package has been successfully implemented

and modifications are in progress to provide a more intuitive user interface.

Run Submodule

19

4. Run Submodule
The Run Submodule, as shown in Figure 3, consists of two blocks: the Run Package and the

Collection Package. The Run Package carries out the individual executions (runs) required in the
experiment and manages the performance data collection process (see Figure 24). This component is fully
automated. It relies on an existing queuing system for most of the job control. Our prototype uses DQS [7]
(see next section). For a given experiment, it accesses the database and retrieves the list of runs to be
executed. For each run, it builds a new script file based on the parameters values for this run and the user-
supplied command file. The command file is parsed for parameter substitution and instrumented for data
collection. The created jobs are then submitted in a single batch to the queuing system for execution. The
instrumentation within the script file takes care of starting and stopping the collection tools by adding a line
in the beginning and at the end of the command line as well as updating the records in the database (add
performance data) once the job is completed.

The Collection Package is designed to handle most data sources. Our reference implementation

currently supports several mechanisms at different levels in the parallel machine.
For low-level data such as memory usage, paging activity or network usage at the process level,

we use a modified version of UCD-SNMP [18], a popular, freely available, easy extensible, SNMP agent
from the UC Davis. The agent already supports a very wide range of system-level data such as network
activity, via standard interfaces. It was extended to give fast access to common statistics such as load
average, process information and memory usage, as well as our custom high-resolution tracing hardware
(Multikron [19]) and GPS-synchronized timing facility. This information is collected and stored as time
series in the database.

Application level data such as response time or number of processors is collected directly form the
Run Package.

Retrieval of
parameters

Mapping of the
parameters in the

command fi le
+ instrumentation
of the collection

tools

Data
Base

Submission
to DQS

Figure 24: Run Package Status.

Our tool is ready to support any third-party measurement tools. We demonstrated this by

collecting high-level performance data from the MPI Profiling library developed at NIST [20]. This library
provides transparent timing and call-count information for most MPI functions (send, receive, etc.) as well
as synthetic metrics including computation, communication and response time for MPI applications.

Run Submodule

20

The Run Submodule is currently being upgraded to receive add-on collection tools. The process of

script files instrumentation and submission to DQS is already completed. The next version will gather in
the same package performance data collection and run package.

Choice and installation of a batch queuing system

21

5. Choice and installation of a batch queuing system

5.1. Introduction
The submission of parallel jobs in a cluster often implies manual efforts, and doesn�t insure

resource sharing between the machines. The most common and convenient way to avoid these problems is
to use a queuing system, which takes care of distributing the applications among the available processors
and managing the execution of these jobs. It is possible to help the user to choose the desired set of
computers for the experiment execution by customizing the queuing system (adding new submission rules
and features). This section explains the process that led to the choice of DQS [7] and the main points of the
installation, maintenance and interaction with the project.

Joseph A. Kaplan and Michael L. Nelson [11] have defined a cluster as �a collection of computers

on a network that can function as a single computing resource through the use of additional system
management software�. To achieve a unified cluster providing distributed computing services, cluster
management software such as a queuing system is required. It addresses several issues: static load
balancing to optimize the computer resources, distribution of the jobs among the resources, time limits and
scheduling rules, etc. All these features have only one aim: optimize the computing power and provide an
interface between the user and the machines that make them look like only one resource.

5.2. Choice of DQS
There are many queuing systems available, each with their own features and specifications. Figure

25 shows the ancestry of a number of queuing systems from [11] in 1994. Since then many new ones have
been created. Nevertheless, most of the queuing systems tested in [11] are still available in updated
versions, and the basic features are still the same. The most constraining requirement for our choice was the
use of a free and open-source queuing system. These parameters restrained the field of investigation very
quickly to two products: DQS (Distributed Queuing System [7]) and PBS (Portable Batch System [16]). In
their latest version, these two queuing systems provide almost the same features and both are sufficient for
our requirements.

Investigating user experience with each of these two queuing systems, we�ve found many sites
explaining their DQS (or CODINE which is the commercial release of DQS) configuration such as [12]
[13], and providing information [14] [11] [15] about DQS installation and configuration. Based on this
information, we chose DQS version 3.2.7 (4.x is still in beta) to manage our two linux clusters.

Choice and installation of a batch queuing system

22

Figure 25: A pictorial cluster system ancestry from [11]

5.3. Installation, configuration and maintenance

a. Installation and configuration
DQS installation information is available from a number of Internet sites and the DQS support

team helps to circumvent missing documentation. A DQS system is composed of a scheduler, the Qmaster,
executed in the background on a �master� machine (a safe computer that keeps information about the
queues), and by daemons, the Dqs_execd, executed on every node linked to a queue. The Qmaster manage
a list of CPUs, hosts and jobs. When no jobs are running on the cluster, the Qmaster is waiting for
messages from the Dqs_execd daemons. They periodically send information on the computational load of
their machine, so the Qmaster always knows the state of resources it is managing. When a user submits a
job to the Qmaster, depending of the requested resources and the load on the nodes, it assigns the job to one
or several queues. The job consists of a script that specifies its behavior. The script can contain DQS
directives (lines beginning with #$, normalized by POSIX). Then, after the submission with the �qsub�
function, the script is analyzed and sent to the Qmaster which adds it to the job list. This list is written on
disk to avoid any problem in case of a crash. If the Qmaster has several jobs in the lob list, it schedules
their execution. The default criterion is the CPU load of the queues (the Qmaster send the new jobs to the
less loaded available queues), but it can be customized easily. The jobs are sorted by priority (if given), and
the priorities are changed to avoid any monopolizing of resources by a single user (e.g. after simultaneously
submitting of a lot of jobs).

The next step for the Qmaster is the allocation of the requested resources (via complexes) if
available. A complex is a name assigned to a group of queues to describe the machines resources that host
them. It enables the selection of a bunch of machine for execution, based on their hardware specifications.
The complexes allocation request is made through a DQS directive in the submission script file. As we are
managing two linux clusters with different generations of Intel CPUs, different memory sizes and one NT
cluster, complexes for each of them have been defined to help the user to select the right machines. In the
same way, complexes are very useful to distinguish the linux clusters from the NT cluster, we�ve built a
bridge between DQS and NT to enable DQS to manage all of our clusters. Here is the list of the complexes
currently defined in our configuration:

Choice and installation of a batch queuing system

23

To request access to only one of the linux clusters, we defined several complexes based on their
processor speed, type, their available memory and we assigned them a name. Thus, to select the slowest
cluster, the user may use one of the next complexes: �Linux1�, �speed=200�, �mem=128� or �ppro200�.
To ask the experiment to be processed on the fastest cluster, the complexes are: �Linux2�, �speed=400�,
�mem=512� or �pII400�. Then to distinguish the linux clusters from the NT cluster, we defined two other
complexes: �Linux� that only requests linux machines (in both linux clusters), and �NT� that asks DQS to
run the experiment on the NT machines.

The first queue fitting the complexes allocation request is allocated to the job. Until this point, the
Qmaster has done all the work. When a queue is allocated to a job, the corresponding Dqs_execd daemon
on the machine handles the execution (if many queues are required for the same job, one Dqs_execd
daemon is chosen to be the master). This machine becomes the master node for this execution and setups
the execution environment if the job is parallel (environment variables), then executes the job on the
queue(s) allocated (including itself). Before a job execution, DQS can send email to one or several
adress(es) to tell the user that has started the job execution. DQS has no facility to send email notification
that a job has completed execution. Finally, the job is started as a process separated from the master node
and the Dqs_execd daemon goes back into wait state (transmitting the load of the queue to the Qmaster and
waiting for other jobs).

The definition of the queues is simple and requires a call to the �qconf� function (see
documentation in Annex B for more explanations). The information requested are the name of the queue,
the host name and a few other configuration parameters (maximum number of concurrent jobs, time limit
for execution, etc). Then to activate the queue, the host must be added to the list of trusted machines, the
Dqs_execd daemon started on the host, and the queue enabled by the administrator. The current
configuration of our cluster is one queue per node, with at most one job running on it.

b. Maintenance
Management of DQS requires only a few functions: qstat, qconf, qdel and qmod. Qconf and qmod

are used to change the configuration of the queues. Qstat lists the queues and their state, as shown in Figure
26. Each queue is represented by its name, type, the number of jobs running over the total number allowed
(0/1 for an empty queue in our configuration), the computational load of the host sent by the dqs_execd
(�er� means enabled and running), and the state (UP means that the dqs_execd is working and that the
queue is enabled by the administrator).

Queue Name Queue Type Quan Load State
---------------- --------------- ------- ------ ------
ntnode1 batch 0/1 0.00 er UP
ntnode10 batch 0/1 0.00 er UP
ntnode11 batch 0/1 0.00 er UP
ntnode12 batch 0/1 0.00 er UP
ntnode13 batch 0/1 0.00 er UP
ntnode14 batch 0/1 0.00 er UP
ntnode15 batch 0/1 0.00 er UP
ntnode16 batch 0/1 0.00 er UP
ntnode2 batch 0/1 0.00 er UP
ntnode3 batch 0/1 0.00 er UP
ntnode4 batch 0/1 0.00 er UP
ntnode5 batch 0/1 0.00 er UP
ntnode6 batch 0/1 0.00 er UP
ntnode7 batch 0/1 0.00 er UP
ntnode8 batch 0/1 0.00 er UP
ntnode9 batch 0/1 0.00 er UP
pnode1 batch 0/1 0.00 er UP
pnode10 batch 1/1 0.97 er UP
lamd SETI 2036 0:12 r RUNNING 10/25/99 11:20:37

pnode11 batch 1/1 1.00 er UP
lamd SETI 2033 0:9 r RUNNING 10/25/99 11:20:37

Choice and installation of a batch queuing system

24

pnode12 batch 1/1 0.97 er UP
lamd SETI 2035 0:11 r RUNNING 10/25/99 11:20:37

pnode13 batch 0/1 0.00 er UP
pnode14 batch 1/1 0.97 er UP
lamd SETI2 2221 0:18 r RUNNING 11/18/99 09:48:22

pnode15 batch 1/1 1.00 er UP
lamd SETI 1992 0:4 r RUNNING 10/19/99 00:31:11

pnode16 batch 1/1 0.98 er UP
lamd SETI 1998 0:7 r RUNNING 10/19/99 00:31:15

pnode2 batch 1/1 0.96 er UP
lamd SETI 1995 0:6 r RUNNING 10/19/99 00:31:12

pnode3 batch 1/1 1.00 er UP
lamd SETI2 2217 0:16 r RUNNING 11/18/99 09:48:21

pnode33 batch 0/1 0.00 er UP
pnode34 batch 0/1 0.00 er UP
pnode35 batch 0/1 0.00 er UP
pnode36 batch 0/1 0.00 er UP
pnode37 batch 0/1 0.00 er UP
pnode38 batch 0/1 0.00 er UP
pnode39 batch 0/1 0.00 er UP
pnode4 batch 1/1 1.00 er UP
lamd SETI2 2218 0:17 r RUNNING 11/18/99 09:48:21
pnode40 batch 0/1 0.00 er UP
pnode41 batch 0/1 0.00 er UP
pnode42 batch 0/1 0.00 er UP
pnode43 batch 0/1 0.00 er UP
pnode44 batch 0/1 0.00 er UP
pnode45 batch 0/1 0.00 er UP
pnode46 batch 0/1 0.00 er UP
pnode47 batch 0/1 0.00 er UP
pnode48 batch 0/1 0.00 er UP
pnode5 batch 1/1 0.96 er UP
lamd SETI 2039 0:13 r RUNNING 10/25/99 15:41: 5

pnode6 batch 1/1 1.00 er UP
lamd SETI 1994 0:5 r RUNNING 10/19/99 00:31:11

pnode7 batch 1/1 0.98 er UP
lamd SETI 2034 0:10 r RUNNING 10/25/99 11:20:37
pnode8 batch 1/1 1.00 er UP
lamd SETI 2244 0:19 r RUNNING 11/29/99 09:41: 9

pnode9 batch 1/1 1.01 er UP
lamd SETI 1999 0:8 r RUNNING 10/19/99 00:31:15

Figure 26: Screenshot from qstat32.
In the Figure 26, several machines (in fact one of the two linux clusters) are running jobs. The line

displaying a job contains the following information: Name of the owner of the job, the job�s name, the job
number (sequential count of jobs that have been run from the DQS installation), the state of the job and
finally the date and time of the start of execution.

5.4. NT Support for DQS
Although DQS has not been ported to NT (and we do not intend to do so it the near future), we

devised a simple mechanism to put our NT cluster under the control of DQS. This mechanism relies on
DQS�s ability to support multiple logical nodes (or queues in DQS terms) on the same physical host. It
means that a single machine can have a Dqs_execd daemon managing several queues sharing the machine.
Our tool (NTshell + NTbridge) transparently mirrors any job run on one of these virtual nodes onto the
target NT host and collects it output. Basically, we are using a linux host with sixteen DQS queues that are

Choice and installation of a batch queuing system

25

linked to each of the nodes of the NT cluster. When they receives the jobs intended to be run on the NT
cluster (from a directive in the command file), our programs (NTshell + Ntbridge) send the jobs to the NT
cluster and retrieve the output measurement information and files.

Figure 27: Basic diagram of the NT support for DQS.

a. NTshell
NTshell is a program that runs a DOS batch file on a Unix machine. Special directives within the

DQS submission script declare the target: DOS machines and the location of a temporary Samba file
system to use. The output is redirected from the remote NT machine to standard output on the Unix
machine. The following operations are performed transparently without any user interaction: copy the
batch file to the target machine, run it, capture its output, send the output back to the host.

The NTshell program is a shell interpreter in the Unix sense; it can be called by adding �#!� line in
a submission script file or directly from the command line. See the documentation in annex C for details.

b. NTbridge
The NTbridge program links DQS to NT. It simply makes sure that the host and queue files, as

well as the core set of environment variables from DQS, are properly exported before running the batch file
with NTshell. See the documentation in annex D for details.

In Figure 26, the first 16 queues (named ntnodexx) are the queues linked by the NTbridge to the
NT cluster nodes.

Unix Host Unix Host

DQS
execd

DQS
qmaster

DQS Queue

output
script

ntnode1

NT
1

NT
4

NT
2

NT
3

ntnode2

ntnode3

ntnode4

26

Conclusions and work in progress

We have designed and implemented a prototype of the Experiment Design Submodule the Run

Submodule and the Queuing submodule. We have linked these submodules into the Experiment Design and
Control Module of our Automated Benchmarking Toolset. These submodules will soon be fully integrated
together by a main user interface. We have integrated the DQS scheduling system into our Queuing System
Submodule to handle experiment execution on the desired computing platforms, our Linux and NT clusters.
To avoid the effort of porting DQS to the NT operating system, we developed a pair of simple tools, called
NTshell and NTbridge, to extend DQS to NT.

Based on our initial unit testing, we have devised a number of modifications to both the internal

design (add diverse features) and to the user interface (e.g., provide a Command File editor in the
Experiment Specification Package, make the GUI of the Experiment Plan Design Package more readable
and readable, etc). The completion of this prototype will incorporate these modifications as well as a
comprehensive user interface for the overall toolset.

27

Acknowledgement

First, I�d like to thank Monique Becker and Alan Mink for giving me the opportunity to get this

unique work experience at NIST.
Then the team of the Automated Benchmarking toolset:
Stephane Simon who worked on the performance data storage platform, Guillaume Marcais (Gus)

who is still working on the project and who has already worked on the collection, visualization and runtime
part of the project. Finally the project supervisor, Michel Courson who has welcome me in the team and
has always trusted me during the past height months. His friendly, interactive and efficient way of driving
this project has been essential for me. GO TEAM !

Of course, I can�t forget my second officemate: Guillaume Lathoud (Java Bert).
I�d like to thank our secretary, Annette Shives who has been so nice with me since the beginning

(good night guys!), and Barry Hershman who helped me to maintain the clusters in good condition.
Alan Mink, one more time, has been crucial for the writing of this report (until the last day!).
To conclude, I want to thank my family and my friends for their constant support.

28

REFERENCES

[1] R. P. McCormack, J. E. Koontz, J. Devaney, Seamless Computing with Websubmit, Information
Technology Laboratory, National Institute of Standards and Technology, December 23 1998.
http://www.itl.nist.gov/div895/sasg/websubmit/websubmit.html

[2] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapam, and T. Newhall. The Paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37-46, November 1995.

[3] D. Reed et al. Scalable performance analysis: The Pablo performance analysis environment I. C.
Press, editor, Proc. Scalable Parallel Libraries Conference, pages 135-142, Los Alamitos CA,
1993

[4] Tcl8.0/Tk8.0 Manual, http://www.sco.com/Technology/tcl/man-8.0/contents.html.
[5] S. Simon, M. Courson, The Cluster Profiling Project, Information Technology Laboratory,

National Institute of Standards and Technology, 1998. http://www.cluster.nist.gov.
[6] G. Marcais, A. Mink, M. Courson, An automated benchmarking tool : the analysis and

visualization module, Information Technology Laboratory, National Institute of Standards and
Technology, 16 August 1999. http://www.cluster.nist.gov.

[7] DQS, The Distributed Queuing System, http://www.scri.fsu.edu/~pasko/dqs.html
D. Duke, T. Green, J. Pasko, Research Toward a Heterogenous Networked Computing Cluster:
The Distributed Queueing System, Version 3.0, Supercomputer Computations Research Institute,
Florida State University, March 1994.

[8] NAS Benchmark, http://www.nas.nasa.gov/Pubs/TechReports/RNRreports/dbailey/RNR-94-
007/html/npbspec.html, May 1994.

[9] Don Libes, Exploring Expect, O�REILLY, November 1996.
[10] NIST : http://www.nist.gov.
[11] Joseph A. Kaplan, Michael L. Nelson, A Comparison of Queueing ,Cluster and Distributed

Computing Systems, NASA Langley Research Center, June 1994.
http://techreports.larc.nasa.gov/ltrs/.

[12] DQS Batch Queuing system, http://www.th.physik.uni.frankfurt.de/DQS.
[13] Professor R Hynds, Serial Batch Work in a Workstation Cluster Environment,

http://www.jtap.ac.uk/uti/projets/h/serial_b.htm.
[14] Mark Baker, Computing Framework Survey: Results,

http://www.sis.port.ac.uk/~mab/Survey/Survey_results.html, 19 August 1997.
[15] Système de gestion de file d'attente (Batch),

http://www.cch.loria.fr/documentation/batch/DQS/dqs.html.
[16] PBS: Portable Batch System, http://pbs.mrj.com.
[17] George E.P. Box, William G. Hunter, Statistics for Experimenters, an intro to design, data

analysis, and modeling building.
[18] The university of Californai at Davis, UCD-SNMP, http://ucd-snmp.ucdavis.edu.
[19] A Mink, �Operating Principles of Multikron Virtual Counter Performance Instrumentation for

MIMO Computers�, NISTIR 5743, November 1995.
[20] http://www.nist.gov/itl/div895/cmr/mpiprof/index.html.
[21] http://www.itl.nist.gov/div895/sasg/websubmit/websubmit.html.

29

Annex A. Nist Overview
A Brief History of NIST [10]
The National Institute of Standards and Technology (NIST), formerly the National Bureau of

Standards (NBS), was established by Congress in 1901 to support industry, commerce, scientific
institutions, and all branches of Government. For nearly 100 years the NIST/NBS laboratories have worked
with industry and government to advance measurement science and develop standards.

NBS was created at a time of enormous industrial development in the United States to help
support the steel manufacturing, railroads, telephone, and electric power, all industries that were technically
sophisticated for their time but lacked adequate standards. In creating NBS, Congress sought to redress a
long-standing need to provide standards of measurement for commerce and industry and support the
"technology infrastructure" of the 20th Century.

In its first two decades, NBS won international recognition for its outstanding achievements in
physical measurements, development of standards, and test methods -- a tradition that has continued ever
since. This early work laid the foundation for advances and improvements in many scientific and technical
fields of the time, such as standards for lighting and electric power usage; temperature measurement of
molten metals; and materials corrosion studies, testing, and metallurgy.

Both World Wars found NBS deeply involved in mobilizing science to solve pressing weapons
and war materials problems. After WWII, basic programs in nuclear and atomic physics, electronics,
mathematics, computer research, and polymers as well as instrumentation, standards, and measurement
research were instituted.

In the 1950s and 1960s, NBS research helped usher in the computer age and was employed in the
space race after the stunning launch of Sputnik. The Bureau's technical expertise led to assignments in the
social concerns of the Sixties: the environment, health and safety, among others. By the Seventies, energy
conservation and fire research had also taken their place at NBS. The mid-to-late 1970s and 1980s found
NBS returning with renewed vigor to its original mission focus in support of industry. In particular,
increased emphasis was placed on addressing measurement problems in the emerging technologies. Many
believe that the Stevenson-Wydler Act implemented, throughout the federal laboratories, the practices that
had been developed at NBS over the years: cooperative research and technology transfer activities.

The Omnibus Trade and Competitiveness Act of 1988 -- in conjunction with 1987 legislation --
augmented the Institute's uniquely orchestrated customer-driven, laboratory-based research program aimed
at enhancing the competitiveness of American industry by creating new program elements designed to help
industry speed the commercialization of new technology. To reflect the agency's broader mission, the name
was changed to the

National Institute of Standards and Technology (NIST). These efforts, and the organizational
changes brought by the NIST Authorization Act for 1989 which created the Department of Commerce's
Technology Administration to which NIST was transferred, served as a critical examination of the role of
NIST in economic growth. These mission and organizational changes, initiated under the Bush
Administration were reaffirmed and strengthened by the Clinton Administration.

In addition to the reviews by Congress, the Administration, and the Department of Commerce, the
Visiting Committee on Advanced Technology (VCAT) of NIST reviews and makes recommendations
regarding the general policy, organization, budget, and programs of NIST. The VCAT holds four business
meetings each year with NIST management, and summarizes its findings each year in an annual report that
is submitted to the Secretary of Commerce and transmitted by the Secretary to Congress.

NIST's four major programs are designed to help U.S. companies achieve their own success, each
one providing appropriate assistance or incentives to overcoming obstacles that can undermine industrial
competitiveness. The programs are:

Measurement and Standards Laboratories that provide technical leadership for vital components of
the nation's technology infrastructure needed by U.S. industry to continually improve its products and
services;

a rigorously competitive Advanced Technology Program providing cost-shared awards to industry
for development of high-risk, enabling technologies with broad economic potential;

a grassroots Manufacturing Extension Partnership with a nationwide network of local centers
offering technical and business assistance to smaller manufacturers; and

30

a highly visible quality outreach program associated with the Malcolm Baldrige National Quality
Award that recognizes continuous improvements in quality management by U.S. manufacturers and service
companies.

NIST organization chart

Figure 28: Organization chart.
The Information Technology Laboratory divides itself in division and than in groups. I was

working in the Scalable Parallel Systems & Applications in the high-performance Systems & Services
Division.

Information Technology Laboratory
An agency of the U.S. Department of Commerce's Technology Administration, the National

Institute of Standards and Technology's primary mission is to promote U.S. economic growth by working
with industry to develop and apply technology, measurements, and standards. The NIST's Information
Technology Laboratory (ITL) is responding to the growing need for measurement and testing technology to
support the development of computing and communications systems that are usable, scalable,
interoperable, and secure. This need has come into sharper focus in recent years with the national effort to
develop an information infrastructure and to support U.S. industry in a global information marketplace.

ITL has programs in three major areas:

• developing tests for human-machine interfaces, software diagnostics and performance,
computer and network security, advanced network technologies, mathematical software, and
conformance to standards;

• collaborating, consulting and operational services in computational sciences and information
services; and 3.federal computer and network security activities;

• federal computer and network security activities.

31

High-Performance Systems & Services Division
The High Performance Systems and Services Division (895) of the Information Technology

Laboratory enables effective application of high performance computing and communications systems in
support of the U.S. information technology industry and NIST by: Conducting research, development and
evaluation of advanced hardware and software components, new architectures, novel application
technologies, and innovative measurement and test methods for improved computing performance,
scalability, functionality, interoperability, flexibility, reliability and economy;

Serving as a testbed for R&D in high-performance computing and information technologies such
as embedded computing, displays, and data storage, gaining experience in the deployment of these
technologies, and developing metrics for the representative technologies;

Serving as a responsive, effective mission-critical resource spanning computational,
communication, mass storage, security, archival, and scientific visualization services; and Providing and
managing state-of-the-art computing and networking facilities which integrate and support an enterprise-
wide heterogeneous information technology environment for NIST.

32

Annex B. Example of code
The following 20 pages (condensed) of code listings represents about 30% of the total code I

produced for this project.

33

34

Annex C. NTshell
NTshell is a simple Expect [9] script that takes a batch file and runs it transparently on an NT (or

any DOS box with a telnet and SMB server) machine, reproducing the output of the script ran on the target
box directly to standard output. It can be used as a shell in the #! line of a script.

Requirements:
In order to work, NTshell requires:
- a running telnet server on the target (tested only with TelnetD from Pragma Systems Inc.)
- an SMB share directly accessible from the target machine (for file transfers)
- smbclient (from the Samba package).
Note: the login information (username, password and domain) is assumed identical for both

resources.

Configuration:
NTshell reads its configuration information (target file, share...) directly from the script with

specially formatted comment lines or from the command line.
In the batch file, NTshell looks for lines matching this syntax:

#N <varName> <value>
The command line syntax is:

NTshell [-d varName=value] [-D varName=value] [-v] -- file1.bat
file2.bat ...

Note that a #N directive or -d appends to the current value if it exists, whereas -D overrides any
previous declaration. Command line declarations precede any declaration in the batch file.

Minimum configuration:
 host : name of the remote NT host
 userName, password, domainName: login information for remote host and share.
 sharePath: UNC path to SMB share to be used, eg. \\seth\MPIPro

Additional variables:
 exportEnv: comma- or space-separated list of environment variables to be exported to the remote

machine at runtime.
 exportFile: comma- or space-separated LOCAL,REMOTE pair. Local should be the absolute

path to the local file to export; remote must be a filename (no path!!) for the remote end. On the remote
side, an environment variable is

declared with the same name containing the absolute path of the copy.
 timeout: declare a timeout value in seconds. By default, there is no maximum time. This may be

useful for programs that may hang (like MPIPro's mpirun if a job is already running on the nodes).

Implementation details:
- Comments may either use the DOS �REM� format or be the usual Unix �#� line; NTshell

converts them all into DOS REMs before transfer.
- The temporary files are copied to and from sharePath\tmp\PID[.JOB_ID]\
- Because �cd� and other NT commands do not support UNC paths, NTshell always maps

$sharePath to the Q: drive. Consider this letter RESERVED.
- NTshell tries to gracefully kill the job upon receipt of a SIGINT or SIGUSR2 by sending

CTRL+C and CTRL+BREAK to the command prompt. Try either signal before using SIGKILL, or else the
job will keep running on the NT side. In particular, use the '#$ -notify" directive in your DQS job so that
dqs_execd send a SIGUSR2 before killing the current job.

35

Annex D. NTbridge
This program makes the link between DQS and NTshell. Although a simple declaration in the

�#!� line of batch files will do1, for the user�s convenience it should be declared as the shell for the virtual
queues. It requires a modified version of DQS that generates a queue file (QUEUES_FILE), similar to the
host file but containing the list of (logical) queues in the pool. A patch to DQS 3.2.7 is available in the
distribution.

NTbridge simply makes sure that the host and queue files as well as the core set of environment
variables from DQS are properly exported before running the batch file with NTshell. Note that the path to
NTshell is hard-coded to /usr/local/bin/NTshell but the NTSHELLPATH environment variable overrides
this value.

NTbridge calls NTshell with this syntax:
NTshell -D host=<host> -d exportFile=$env(HOSTS_FILE),HOSTS_FILE

\
-d exportFile=$env(QUEUES_FILE),QUEUES_FILE \
-d

exportEnv=QUEUES_FILE,NUM_HOSTS,DQS_CELL,LOGNAME,JOB_NAME,QUEUE,JOB_ID\
[-v] -- <args>

NOTE: the NT batch file must use %QUEUES_FILE% (logical queues) for host file, rather than

%HOSTS_FILE% (physical machines that mirror the NT nodes, most likely all the same).

Example:

#!/bin/sh /usr/local/bin/NTshell
This is a comment line

These are NTshell directives
#N host ntnode4
#N userName Mpiuser
#N password Mpiuser
#N domainName DIV895-01
#N sharePath \\seth\MPIPro
#N timeout 1000

These are DQS directives.
#$ -j y
#$ -l qty.eq.2

echo Running from:
hostname

echo Number of hosts: %NUM_HOSTS%
type %QUEUES_FILE%
echo Running MPI Program
mpirun -np 2 -mach_file %QUEUES_FILE% \\seth\MPIPro\ft.A.2.try
COPY c:\mpiprofile.out

\\seth\MPIPro\results\mpiprofile.%JOB_ID%.out

1 The current version of DQS (3.2.7) does not handle �#!� lines properly: scripts are always run with the
shell declared in the queue configuration.

36

KNOWN BUGS:
- Need to do a DOS->Unix text conversion (0xOD,0xOA maps to empty lines).
- Killing is barely more than a kludge and does not always work.

